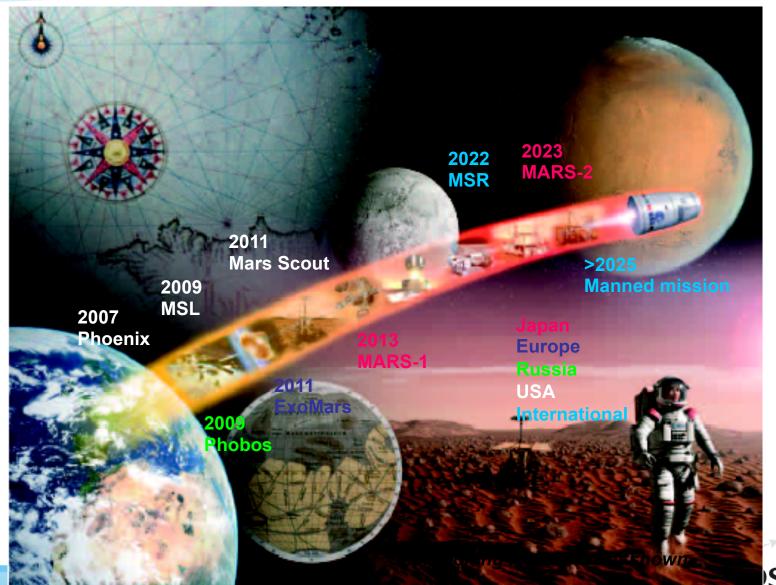
Soft-landing and hazard avoidance aspects for future exploration missions

Francine BONNEFOND - Yannick DEVOUASSOUX - Eugénio FERREIRA - Stéphane REYNAUD

IPPW5 - Session 2 - June, 25th


Table of contents

- Status & context
- Entry, Descent and Landing Systems
 - Requirements
 - Technologies
- Soft-landing
- Hazard avoidance
 - Hazard mapping
 - Piloting
 - Trajectory planning & guidance
- Conclusions

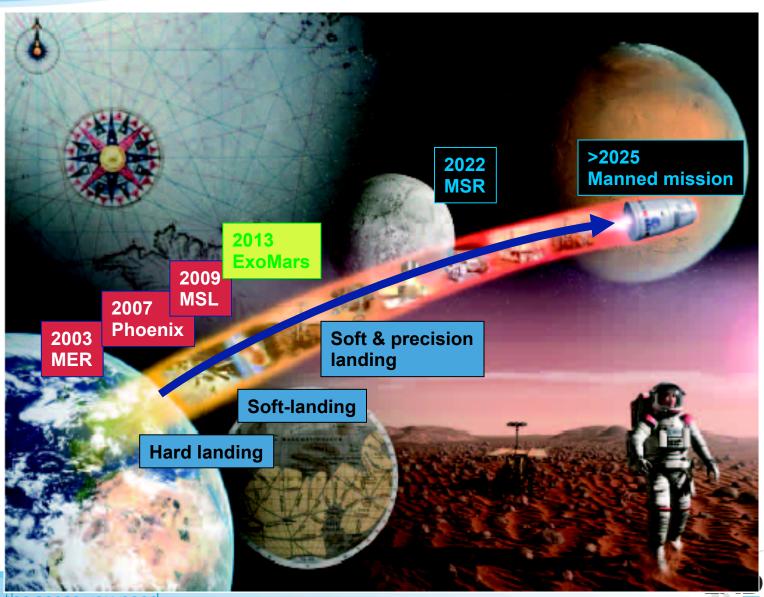
the property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall not be disclos

The way to pave the Martian exploration (1/2)

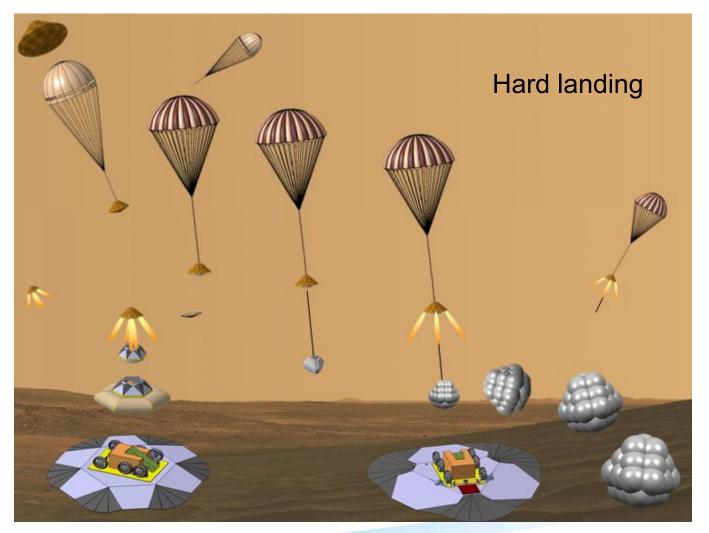
The way to pave the Martian exploration (2/2)

- Near term perspective 10 15 years
 - Soil analysis: Phoenix
 - Soil analysis & rover: ExoMars, MSL, MARS-1
 - Mars sample return: Phobos-Grunt
- Longer term:
 - Mars Sample Return: MSR international cooperation (NASA +ESA), MARS-2
 - Manned mission on an international cooperation

MASTER AND IMPROVE the ENTRY, DESCENT and LANDING (EDLS) technology towards the future

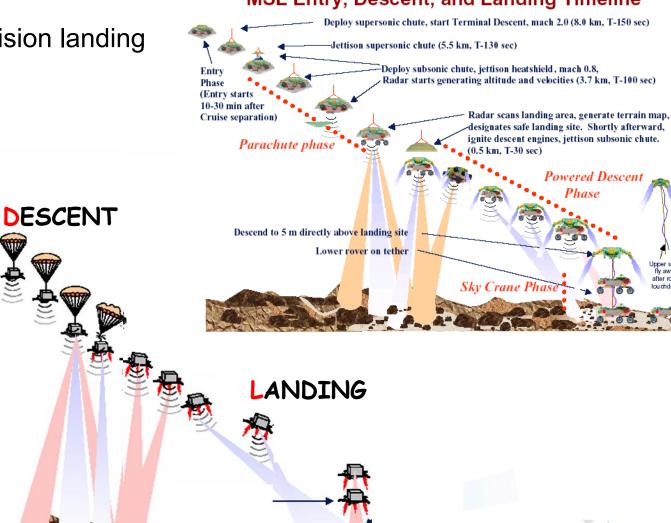

EDLS – definition & main goal

- main objective: guarantee the EDL phases, bring to the Martian surface the scientific payloads safely and keep their integrity all along the mission
- Key factor success:
 - Mastery of the ballistic coefficient β,
 - Management of COG & Motion around the COG
- EDLS= choice and optimisation of design and parameters for the whole sequence until touchdown


ent is the property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall not be disclo

EDLS – the new missions

ne property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall not be disclo


EDL sequence with airbags (1/2)

Soft and precision landing

MSL Entry, Descent, and Landing Timeline

EDLS – technologies required

Mission phase	EDLS main functions per phase	Foreseen concept/device	Sketches
Separation and Exo-atmospheric phase	Ensures a ~ null angle of attack at entry	Axis-symmetrical shape	
Entry phase	Decelerate and stabilise the DM	Heat shield and back-cover	
Descent phase		Parachutes Propulsion ignition and activation	
Landing phase	Land on Mars Minimise the shock at landing and detect that the probe is motionless	Vented Airbags, Unvented airbags or landing gears	PL Mars Exploration Rover Mission II.C MER Flight Airbag Assembly February 2003

EDLS technology constraints (1/2)

Aeroshell

Structure: mastered

TPS: ablative material needed

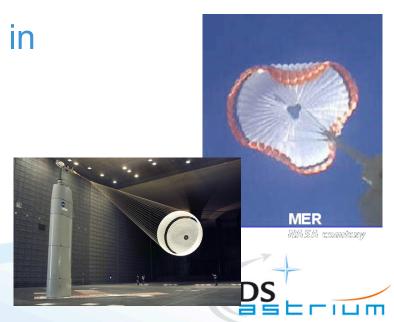
Norcoat Liège baseline

Density: 0.47

Thickness: from 1.5 to 150 mm

Qualified in CO2 for Martian entries

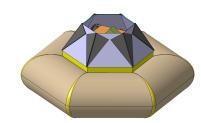
Heat fluxes up to 2 MW/m2

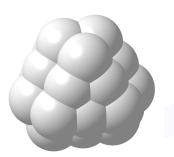


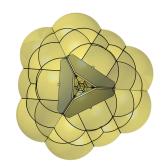
Type: Viking tests, Beagle 2 tests

Materials: MER, MPF, HUYGENS

Mortar: MER, HUYGENS






EDLS technology constraints (2/2)

- Propulsion: solid and liquid mastered in Europe
 - Off-the-shelf equipment
 - Delta qualification necessary to adapt for the mission
- Vented airbags:
 - Proven in Earth environment,
 - Not qualified in Martian one,
- Unvented airbags:
 - flight-proven on Mars by US,
 - not proven by Europe
 - Constructional principals known, specific laboratory tests needed for key properties
- Landing legs
 - Low-risk technology based on crushable materials and deployment systems

EDLS – the different options

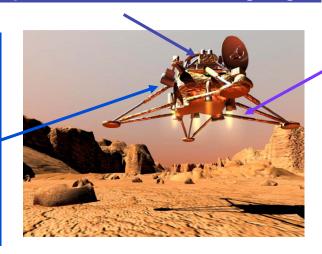
	parameters	entry	descent	landing	examples
Simple hard landing	$M \le 100 \text{ kg}$ V ~20 m/s P ± 100 km		2 - s t a g e chutes	airbags	Beagle 2, NetLander phase B
h a r d landing	$M \le 1000 \text{ kg}$ $V \sim 20 \text{ m/s}$ $P \pm 60 \text{ km}$	Ballistic blunt shape with 70° cone angle	2 - s t a g e chutes S o I i d retrorockets	airbags	M a r s Pathfinder MER
S o f t - landing	M ≤ 2000 kg V < 5 m/s P ± 30 km		2 - s t a g e chutes A t t i t u d e	Airbags o r landing gears	Phoenix, Viking both with landing gears
S of t & precision landing	O	guided blunt shape with 70° cone angle	c o n t r o l system	crane	MSL

EDLS – what is affordable for Europe?

- Contribute to the way to Mars thanks to a EDLS with growth potential (future missions) and explore new areas
- Come to a versatile EDLS for bigger entry vehicles
- Build on experience gained in Europe for TPS, chutes and propulsion
- Reduce the risks on technologies not mastered in Europe
- → Soft-landing will become mandatory
 - → With precision landing
 - → With hazard avoidance

Soft-Landing/hazard avoidance: mastery of additional Key Technologies

Navigation & Flight Control System


Real-time control loop which could deal with:

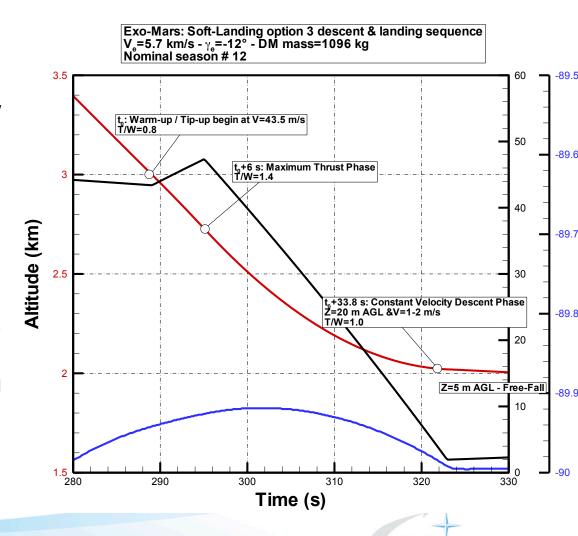
- control of the trajectory & attitude
- landing site environment analysis
- recomputation of the new landing target

Sensors devices

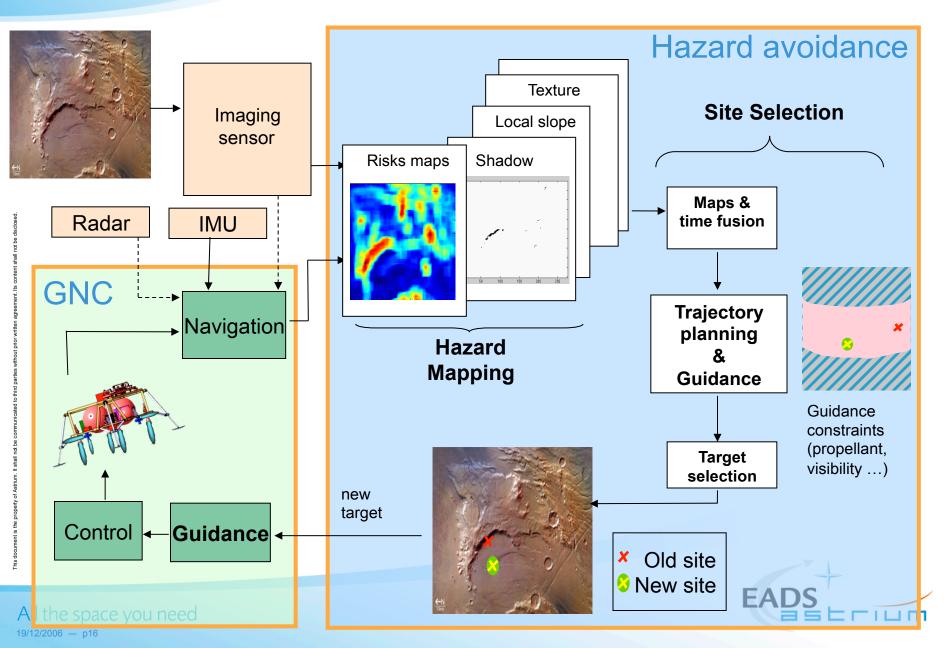
Navigation sensorsLanding area analysissensors allowing groundhazard detection

in a timeline compatible with the trajectory control & robust to the operating environment

Propulsion devices


A trajectory control device, reactive and performant enough to fit with:

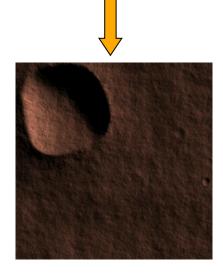
- Braking during descent
- Controlling attitude of vehicle
- Providing the fine manoeuvrability required for hazard avoidance during final approach

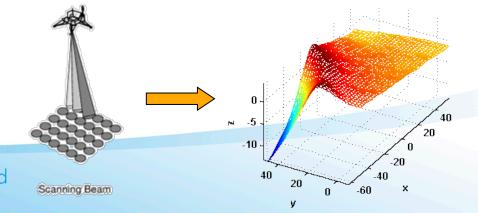


Typical final landing with soft-landing

- Powered descent propulsion law:
 - Initial altitude = 1000 m AGL
 - Warm-up / Tip-up duration: 6 s / T/W=0.8
 - Braking Phase (Gravity Turn or MBTL) T/W = 1.4
 - CVD phase @ Z=20 m down to 5 m AGL where T/W=1.0
 - Escape Phase
- Propulsion System based on SCA Ariane 5:
 - 12 SCA AR5 engines canted by 20° (400 N with possibly 450 N maximum thrust each – see ARD) used for braking & control

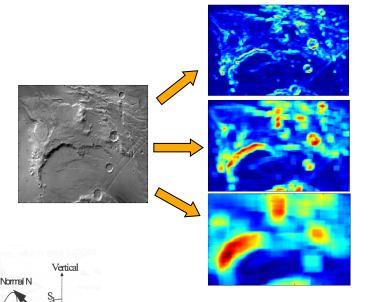
Hazard avoidance architecture

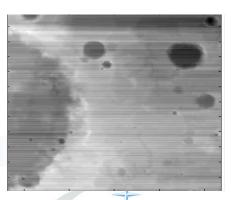



NPAL Camera

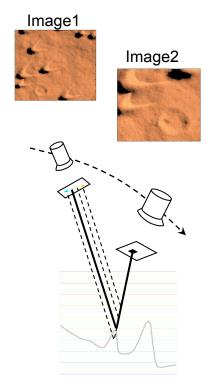
Imaging sensor

	Advantages	Drawbacks	
Camera	Low weight,volume and powerFlight proven(MER)	Sensitive to environment and blurEstimation of slope difficult	
Lidar	Direct access to 3D dataHazard mapping Simple algorithm	High weight,volume and power	





- Detection of shadows
 - simple thresholding
- Detection of rocks, craters rims, edges, etc
 - Image texture analysis
 - Correlation or (multiscale) variance
- Estimation of local slope
 - Shape from shading methods
 - Strong hypotheses
 - Minimum slope computation
 - Carlotto line integration method
 - → Poor performances in general
 - Improvement possible by using feature points tracked by navigation



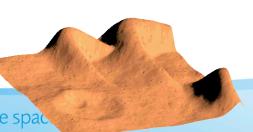
Vision based Hazard mapping (2/2)

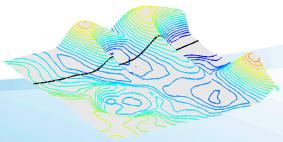
In-house development: structure from motion

Stereo principle:

zone choice in image2

altitude assumption on corresponding terrain




warping into image1

Match if assumption verified

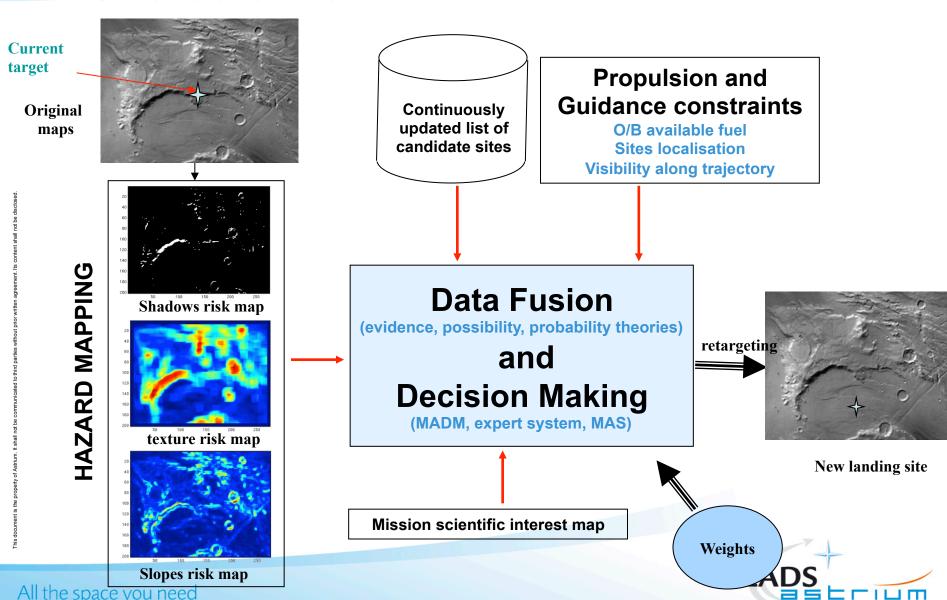
- Low sensitivity to atmosphere
- Need for non uniform terrain for efficient correlation
- Performances function of navigation accuracy

be communicated to third parties without prior written agreement. Its content shall not be disclosed.

All the space 19/12/2006 — p19

Lidar based Hazard mapping

- Lidar gives direct access to 3D data
- Data samples need to be corrected for movement during the scan and projected onto regular grid → 3D map of terrain
- Slope information obtained from Least Square or Least Median square Plane fitting
- Roughness (rock size) obtained from difference between plane and measured surface



Trade-off

- Vision based: flight proven sensor but real difficulties with slope estimation
- LiDAR based: slope estimation easy but sensor not mature yet
- High CPU and memory needs: hardware implementation may be necessary for RT feasibility
- →In the long run LiDAR is the technology of choice
- Vision- and LiDAR-based HA to reach TRL5-6 by 2009 through dedicated ESA projects

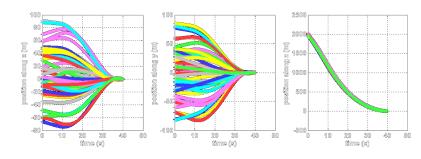
Site selection

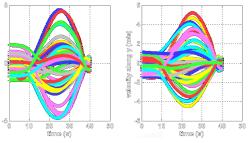
19/12/2006 — p22

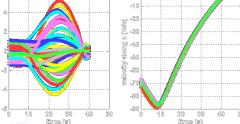
Trajectory planning & Guidance (1/2)

Objectives: compute trajectory and acceleration required to reach the target while being compliant with:

- soft-landing requirements (altitude/velocity)
- fuel budget
- visibility constraints (keep target inside sensor FOV)
- enabling retargetings
- limited on-board computational burden


and robust to off-nominal flight conditions




Trajectory planning & Guidance (2/2)

- Gravity Turn: simplest solution (see Viking lander)
 - Poor accuracy and no hazard avoidance capability
- Simple dynamic equations : the two-points boundary problem can be solved in an explicit form
 - > simple explicit methods:
 - Apollo E-guidance
 - Bilinear Tangent Law
 - Chandler scheme, etc.
 - More sophisticated methods in-house developed :
 - Optimal Command (or Predictor-Corrector)
 - G-guidance
 - Collocation methods
 - Neural Networks

→ High landing accuracy, lower fuel consumption and robust to off-nominal I.C.

Monte Carlo results

Conclusion

- EDLS is a key element for the planetary exploration
- Hard landing was flight-proven by NASA thanks to MPF and MER

- Next step is to land in remote areas
 - Soft-Landing is the next step for EDLS
 - Associated function is hazard avoidance
- ⇒ Thanks to its experience and technologies Europe is able to develop this capability for EDLS and gain a valuable place in the exploration route

